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Fig. 1: (a) 16 users collocated in the same real world room start exploring a virtual environment from nearby locations. Our
method leverages the user spatial coherence in the virtual environment to send data to all users simultaneously, which leads to
faster frame completion (b-d) than for the conventional approach of sending data to each user, one at a time (e-f). With our method,
the percentage of incorrect pixels ε in the user frame decreases to zero in 5 s, whereas with the conventional method, incorrect
pixels remain even after 12 s. These results correspond to the median user in Figure 9 (right).

Abstract— This paper presents an approach to alleviating the server–client communication bottleneck in collocated multi-user virtual
reality (VR). Instead of transmitting unique packets to each client, the system multicasts the same packets to all users, combining
packetization, visibility-aware prioritization, and lightweight acknowledgments to ensure efficiency and fairness. To enable rapid
scene completion, the environment is partitioned into independent fixed-size packets that can be decoded immediately upon arrival,
and transmission order is guided by precomputed visibility footprints. Scalability is achieved through repeated multicast until compact
bitmap acknowledgments confirm reception, keeping communication cost mostly independent of the number of clients. A controlled
study with 23 participants in groups of 7 and 16 showed that this method reconstructs environments several times faster and with
fewer missing parts than a conventional unicast TCP-based approach. These findings demonstrate that multicast transmission over
commodity Wi-Fi can support large collocated VR groups.

Index Terms—Multi-user collocated virtual reality, multicast, broadcast, empirical validation.

1 INTRODUCTION

Recent advances in virtual reality (VR) technology have enabled qual-
ity immersive experiences at commodity prices. All-in-one headsets,
such as Meta’s Quest 3 [22] and Quest 3S [23], have on-board graph-
ics, tracking, and networking, affording users a completely untethered
experience free of external trackers [18]. This accessibility meets the
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prerequisites for mass deployment across domains like science, engi-
neering, and healthcare. VR is particularly promising for large lectures
on university campuses [12]. Education research has well documented
that in large lectures (100+ students), student engagement decreases,
hindering learning [6]. VR has the potential to reverse this trend by
providing students with immersive 3D visualizations of artifacts and
allowing instructors to virtually partition the classroom into small, col-
laborative groups.

However, realizing this potential in a crowded lecture hall faces
a critical infrastructure barrier: the wireless communication bottle-
neck. Ideally, a classroom VR system should not require hardware
infrastructure beyond the room’s standard wireless router and the in-
structor’s laptop. Yet, unlike distributed users who rely on separate In-
ternet connections, collocated users in a single room compete for the
same limited wireless spectrum. As the number of clients increases,
standard unicast transmission—where the server sends a unique data
stream to each user—causes bandwidth saturation and packet colli-



sions, leading to unacceptably high latency and incomplete scene ren-
dering [25].

Addressing this scalability challenge has been a focus of recent net-
working research, yet a significant gap remains between theoretical
solutions and practical deployment.

• Physical/MAC Layer Modifications: Approaches such as Soft-
Cast [13], FlexVi [24], and MuDRA [10] propose modifying the
Wi-Fi physical (PHY) or MAC layers to enable efficient multi-
cast. While effective in simulations or Software Defined Radio
(SDR) testbeds, these methods rely on customized Wi-Fi drivers
or firmware, access to which is unavailable on commercial stan-
dalone headsets due to security constraints.

Additionally, certain systems such as M5 [34] and Badnava
et al. [1] leverage millimeter-wave (mmWave) networks and
demonstrate high throughput in small-scale multi-user scenarios.
However, mmWave is highly susceptible to blockage. In a dense
lecture hall, students inevitably occlude each other, breaking the
line-of-sight required for stable connections [30].

• Edge-Cloud Offloading: Frameworks such as MuVR [17] re-
duce headset rendering load but typically rely on unicast trans-
mission for the final hop. In a room with 50+ students, the ag-
gregate bandwidth demand exceeds channel capacity regardless
of where the rendering occurs.

Consequently, a deployment gap exists: theoretical solutions are
often undeployable on standard hardware, whereas deployable so-
lutions (standard unicast) fail to scale. Furthermore, unlike video
streaming where content is consumed linearly and resolution is eas-
ily modulated, VR is an interactive medium where users effectively
“teleport” through the scene, creating bursty, unpredictable data de-
mands.

To bridge this gap, we present a scalable multi-user VR system that
operates entirely at the application layer, ensuring compatibility with
commodity off-the-shelf (COTS) hardware without firmware modifi-
cations. Our key insight is that collocated users in a shared environ-
ment exhibit high spatial coherence—they are likely to view similar
parts of the scene simultaneously. We exploit this by multicasting ge-
ometry packets to all users at once. However, unlike video streaming
(which consumes data linearly), interactive VR requires random ac-
cess to 3D assets. We therefore combine visibility-aware packetization
with a novel lightweight bitmap acknowledgment mechanism. This
allows the server to guarantee reliable delivery for the entire group
with O(1) feedback overhead, avoiding the ”ACK implosion” typical
of reliable multicast.

This paper makes three key contributions:

1. A Commodity-Compatible Multicast Framework: We pro-
pose the first application-layer multicast protocol for dense 6-
DOF VR that bypasses OS-level restrictions, enabling scalable
deployment on standard Wi-Fi and locked headsets.

2. Scalability by Design: We introduce a prioritized scheduling
algorithm driven by group visibility and bitmap ACKs, ensuring
that transmission time remains constant regardless of the number
of users.

3. Ecological Validation: In contrast to simulation-based studies,
we evaluate our system in a real-world environment with up to
16 collocated users. Results show that our method reconstructs
scenes several times faster and with fewer errors than conven-
tional TCP unicast, validating its robustness in high-interference
settings.

2 RELATED WORK

2.1 Multi-User VR: The Bandwidth Bottleneck
Distributed virtual reality has evolved from early theoretical frame-
works [26] to complex modern implementations. However, scaling
these systems for collocated groups has a number of limitations.

Most platforms rely on unicast transmission, where performance
degrades non-linearly when users exceed ten due to channel con-
tention [25]. To address client-side compute limitations, Edge-Cloud
systems such as MuVR [17], MuV2 [19], and MuCVR [16] offload
rendering to servers. While reducing client GPU load, they paradox-
ically increase pressure on the network. Similarly, visibility-aware
streaming has been used to reduce bandwidth by prioritizing content
within a user’s view. Systems such as CloudVR [14], Chen et al. [5],
and CloVR [35] leverage gaze data to cull invisible sectors. Crucially,
both Edge-Cloud and visibility-based approaches treat users in isola-
tion. Even if data is culled, the server still transmits unique streams to
each client. In collocated settings where users share a viewing frus-
tum, this results in redundant transmission of identical data, failing to
exploit the group’s spatial coherence.

To overcome bandwidth limits, recent work such as M5 [34] and
Badnava et al. [1] utilizes millimeter-wave (mmWave) frequencies.
While providing high throughput for small groups, mmWave is brit-
tle in dense setups. As noted in empirical studies [30], human bodies
are significant blockers of mmWave signals. In a lecture hall, students
inevitably occlude one another, causing frequent link failures that sub-
6GHz Wi-Fi (our focus) avoids.

2.2 Group Communication in Networked VR
To address the inefficiency of unicast, researchers have explored mul-
ticast solutions. As early as 1995, Macedonia et al. [20] demonstrated
IP multicast for scaling distributed environments. However, modern
Wi-Fi introduces new reliability challenges.

2.2.1 Physical/Link-Layer Multicast

To tackle the reliability issues of standard Wi-Fi multicast (which
lacks ACKs), systems such as SoftCast [13], FlexVi [24], and Mu-
DRA [10] modify the PHY or MAC layers. They employ tech-
niques such as pseudo-analog transmission or leader-based feedback.
Other approaches, such as Medusa [28] and M3 [15], utilize “pseudo-
multicast” where devices operate in promiscuous mode to overhear
unicast transmissions intended for others. While theoretically supe-
rior, these approaches require Software Defined Radios (SDR), root-
level driver modifications, or promiscuous mode access. Modern com-
mercial headsets (e.g., Meta Quest) operate as “walled gardens” with
locked Android kernels, making these modifications difficult to de-
ploy. Our system achieves similar reliability purely at the application
layer.

2.2.2 Application-Layer Multicast

Schemes that operate above the driver level are deployable on stan-
dard hardware. VRCast [8] and JUMPS [21] use application-layer
multicast but focus almost exclusively on 360-degree video. Video
data is linear, allowing simple pre-fetching. In contrast, Xue et al. [32]
highlighted how transport choices (TCP vs UDP) impact interactivity
in cloud gaming. Chen et al. [3] proposed multicast with view syn-
thesis to reduce bandwidth. However, 6-DOF VR (our focus) differs
from video or cloud gaming; it requires random access to 3D geom-
etry as users teleport unpredictably. Techniques designed for linear
video streams cannot handle the bursty, dependency-heavy nature of
3D asset streaming.

3 COLLOCATED MULTI-USER VR SYSTEM

Our system (Figure 2) is designed to transmit complex virtual environ-
ments efficiently to collocated VR users while maintaining fairness,
robustness, and scalability. To achieve this, we introduce three main
components. First, individual objects are preprocessed into fixed-size
packets that can be transmitted, decoded, and rendered independently
(subsection 3.1). Second, scene visibility is precomputed offline to en-
able efficient runtime lookups of packet footprints without costly per-
frame calculations (subsection 3.2). Finally, packets are scheduled at
runtime using dynamic packet prioritization strategies and bitmap ac-
knowledgment (ACK) to balance quality, completeness, and fairness
across clients (subsection 3.3).
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Fig. 2: Overview of the collocated multi-user VR system.

3.1 Individual Object Packetization

To reduce network transmission, our system transmits only the ver-
tices and triangles visible in the current view, rather than entire objects
(Figure 3b, zoom in to see the mesh-based effect). Using our partition-
ing algorithm, transmitting only visible packets cuts the total number
of packets by 65–75% compared to sending complete objects, as mea-
sured during system implementation.

To avoid the computational overhead of subdividing meshes at run-
time—which scales poorly with the number of users—we preprocess
each mesh into fixed-size packets using a greedy triangle-grouping
strategy (Figure 3a). Each object is subdivided into independent pack-
ets of uniform size, with each packet containing the object ID, sub-
mesh ID, chunk ID, vertex attributes (positions and normals), and tri-
angle indices. This structure allows packets to be decoded and ren-
dered immediately upon arrival, without waiting for the complete ob-
ject (similar to our work with point clouds [4]). Submeshes and solid-
color materials are preserved by recording the corresponding submesh
ID, ensuring visual consistency during reconstruction. For texture-
based objects, textures are transmitted separately as images, and each
packet stores the texture names for reference.

As outlined in Algorithm 1, the procedure begins by selecting a seed
triangle and creating a new packet. Subsequent triangles are added
to maximize shared vertices with those already included, as long as a
packet payload size limit (which we set to 1400 bytes) is not exceeded.

On average, this grouping method increases the number of packets
per object by 12.18% ± 8.39% compared to a brute-force split, in
which packets contain no shared vertices or triangles. Although brute-
force splitting produces slightly fewer packets, it does not guarantee
that every packet includes the necessary vertex data for decoding.

3.2 Scene Preprocessing

While computing visible packets directly at runtime guarantees cor-
rectness, it is computationally expensive and scales poorly with the
number of users. To mitigate this overhead, we preprocess visibil-
ity information offline and store it in a structured form for fast online
lookup.

The virtual environment (a city-scale scene) is discretized into a
regular grid of 1 m × 1 m cells on the horizontal plane. For each grid
cell, we approximate potential user viewpoints by sampling eight po-
sitions: the four cell corners at heights of 1 m and 2 m. For each sam-
ple, we compute packet footprints using a rasterization-based method.
Specifically, the geometry of each packet is rendered into an offscreen
buffer, and the number of pixels surviving the depth test is recorded as
its visible footprint. This automatically accounts for occlusion, since
only fragments passing the depth test contribute to the footprint. The
footprint for a given cell is then obtained by aggregating results across
the sampled points, yielding a compact representation of the packets
likely to be visible and their relative contribution to the final image.
Figure 3 illustrates this process across the entire scene, highlighting
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Fig. 3: Object packetization and scene preprocessing. Top row: ob-
jects partitioned into fixed-size packets, color-coded by packet. Bot-
tom row: precomputed visibility footprints for a given user viewpoint.
Both first- and third-person views are shown.

mesh-based visibility computation from a user’s viewpoint to guaran-
tee perceptual completeness.

At runtime, instead of performing costly visibility and projection
checks for every user and frame, the server simply identifies the
client’s current grid cell and retrieves the corresponding precomputed
packet footprints. This transforms an otherwise per-frame geometric
computation into a lightweight table lookup, greatly reducing server
load.

Furthermore, to improve robustness against small head movements
that may cross grid boundaries, we expand coverage beyond the cur-
rent cell by also including visible packets from the surrounding 3×3
neighborhood. If a packet appears in multiple cells within this region,
its footprint values are aggregated across those cells when computing
its priority.

3.3 Runtime Transmission Scheduling

The server updates each client’s priority queue whenever it sends a
packet (subsubsection 3.3.1), the client acknowledges received pack-
ets (subsubsection 3.3.2), or the client teleports to a new grid cell (sub-
subsection 3.3.3). Each queue maintains priorities independently per
client, as shown in Figure 4.

When transmitting to multiple clients, the server enforces fairness
through round-robin scheduling. Because all clients use identical
headsets with comparable bandwidth, the server cycles through clients
without per-client adaptation. For each client in turn, the server trans-
mits the packet with the largest footprint remaining in that client’s
queue. Clients with no pending packets are skipped. This mechanism
is adapted differently for the conventional method using TCP unicast
and for our method using UDP multicast.

In the conventional method, packets are delivered individually to
each client, with reliability ensured by TCP’s built-in ACK and re-
transmission mechanisms. For example, as illustrated in Figure 4, the
server may first send packet 521 to client C1, then packet 1 to C2,
packet 65 to C3, packet 3 to C1, and so on.

In our method, where reliability is not guaranteed, the server re-
peatedly transmits visible packets until it receives bitmap ACKs from
clients confirming successful reception.



Algorithm 1: Preprocessing objects into fixed-size packets
Input: Mesh M with vertices V , normals N, and submeshes

{S1,S2, . . . ,Sk}
Input: Maximum packet size Pmax = 1400 bytes
Output: List of packets C
C← /0 ;
foreach submesh Si in M do

T ← list of triangles in Si ;
visited← /0 ;
while |visited|< |T | do

Create new packet c with metadata (object ID,
submesh ID, packet ID, etc.);

size← header size;
DIFaddVertices← /0 ;
Select an unvisited triangle t ∈ T ;
Add t and its vertices to c ;
visited← visited∪{t} ;
Update size ;
while true do

best← triangle t ′ ∈ T \ visited that
maximizes shared vertices with

DIFaddVertices
and fits within Pmax ;

if no such triangle exists then
break

Add t ′ and new vertices to c ;
DIFaddVertices←

DIFaddVertices∪{vectices o f t ′} ;
visited← visited∪{t ′} ;
Update size ;

Append c to C;

return C

3.3.1 Dynamic Packet Prioritization

For each client, the server tracks how many times each packet (visible
or not) has been sent. Packets that have been transmitted fewer times
are prioritized over those already sent multiple times, regardless of
footprint. For example, in Figure 4, after packet 521 is taken from C1
and sent, it is pushed back in the priority queue even though it has a
larger footprint.

This strategy is motivated by two considerations. First, it increases
the likelihood that clients reconstruct a complete scene, even if some
objects temporarily contain holes due to packet loss, instead of over-
focusing on high-footprint packets. Second, because ACKs are re-
turned only every 100 ms (to reduce network congestion and CPU
usage), immediately retransmitting frequently sent packets risks un-
necessary redundancy. By pushing such packets back in the queue,
the server staggers retransmissions, reducing wasted bandwidth and
lowering the chance that multiple copies are lost in the same burst.

When a packet is chosen from a client’s queue, it is simultaneously
sent to all clients via multicast. The server then increments the send-
ing counter for that packet across all clients and pushes it back in their
queues if still pending. For instance, in Figure 4, the server first se-
lects packets 521, 1, and 65 from C1, C2, and C3, respectively. When
packet 3 is later selected from C1, its counters in C2 and C3 are also
incremented, pushing it back in all of their queues. As a result, after
taking packet 14 from C2, the server sends packet 457 from C3 instead
of 3.

3.3.2 Bitmap Acknowledgment (ACK)

When a client receives a new packet, it needs to inform the server.
The primary goal of our bitmap ACK design is not to guide the ini-
tial scheduling or transmission of packets, but to eliminate redundant
packets during repeated transmissions, enabling the server to focus
subsequent transmissions on only the missing ones.
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Fig. 4: Dynamic packet prioritization and bitmap acknowledgment.
Top: Conventional scheduling (TCP) transmits packets unique to each
client sequentially (e.g., Packet 521 to C1, then Packet 1 to C2). Bot-
tom: Our multicast method shares transmissions to reduce redundancy.
When the server transmits Packet 3 (green) for Client 1, it is multicast
to all users. Since Clients 2 and 3 also receive this data, the server
immediately deprioritizes Packet 3 in their queues, moving it from the
upcoming high-priority slot (dotted border) to the back of the queue
(solid border). Legend: Colors represent unique Packet IDs; identical
colors indicate identical data content.

Each client maintains a temporary ACK list of received packet IDs,
which it sends to the server every 100 ms and clears after sending.
Upon receiving a bitmap ACK, the server removes the acknowledged
packets from that client’s priority queue. For example, in Figure 4,
once packet 457 is sent and acknowledged by C3, the server marks
it as received, removes it from C3’s queue if present, and excludes
it from future scheduling. If a client happens to receive a packet not
originally scheduled for them, they will still acknowledge it, ensuring
the server does not redundantly assign it to them later.

Compared to traditional retransmission requests, a bitmap ACK is
better suited to multicast. Because the server broadcasts the same
packet to all clients, per-packet ACKs or NACKs would create ex-
cessive feedback traffic. A bitmap ACK instead compresses the state
of many packets into a single periodic message, avoiding timers and
explicit missing-packet requests. The trade-off is a fixed 100 ms ACK
delay, but this is acceptable since clients continue to receive new pack-
ets during that interval and dynamic prioritization reduces wasteful re-
transmissions.

3.3.3 Client Navigation

Packet transmission counts and bitmap ACKs are not reset when a
client enters a new grid cell. They are only reset upon client reconnec-
tion or a full session restart.

Whenever a client enters a new grid cell, its priority queue on
the server is cleared and recreated. However, because many pack-
ets may already have been received—often thanks to other “pioneer”
clients—the actual queue is shorter than it would be under the conven-
tional method. The more clients move, the more data they share,
and the less any single client needs data individually.



4 EVALUATION

We evaluated our method using UDP multicast (experimental con-
dition) against the conventional method using TCP unicast (control
condition) through a user study with a session of 16 participants as
well as a session of 7 participants. The two sessions were conducted
on different days with different participants. The study protocol was
reviewed and approved by Purdue University’s Institutional Review
Board (IRB-2025-1182), which serves as the formal ethical oversight
body for human subject research at our institution. The goal was to ex-
amine the advantages and limitations of using our approach for larger
groups of collocated clients.

4.1 Hypotheses

• HP1. For the conventional method, the amount of data transmit-
ted during a time period per client decreases as the number of
clients increases. Our method is less affected by the number of
clients.

• HP2. With our method, clients receive a more complete scene
while navigating.

4.2 Setup

The study was conducted in a large classroom on our university cam-
pus, with the server and all clients collocated in the same space. Both
server- and client-side software were implemented in Unity 6. The
server ran on a Windows 11 machine (Dell XPS-8960 [7]) with a 14th-
Gen Intel Core i9-14900K CPU (24 cores, 32 threads), 32 GB DDR5
RAM (5600 MT/s), NVIDIA GeForce RTX 4060 Ti (8 GB), and a
1 TB NVMe SSD. Each participant wore a standalone Meta Quest 3
headset [22] and used a right-hand controller.

4.3 Network Configuration

We use a Banana Pi BPI-R3 router [29] running OpenWrt 23.05.2. Our
system is evaluated under 802.11a for both unicast and multicast trans-
missions. Unicast employs the Minstrel rate control algorithm [33],
while the multicast (broadcast) physical rate is manually fixed at 54
Mbps. To reduce the impact of power save mode (PSM), we configure
the DTIM interval to 1 and set the beacon interval to 10 ms.

4.4 Participants

We recruited a total of 23 participants (13 male, 10 female) with ages
ranging from 18 to 28 years (M = 21,SD = 2.5). In terms of VR ex-
perience, one participant reported never having used a VR headset,
five had tried it once, twelve used it occasionally, and five used it fre-
quently.

Pre-experiment eligibility check. Before the participants joined the
user study, they read an eligibility questionnaire about whether they
were prone to motion sickness, whether they have mobility issues that
prevents them from wearing a VR headset, and whether they have nor-
mal or corrected vision. After they came to the study, they answered
the demographic questionnaire and filled out the consent form. The
total time involvement of each participants was less than 60 minutes
and was compensated with a gift card.
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Fig. 6: Experimental procedure. (a) participant teleporting to a node
along the path. (b) answering in-VR questions about experience.

4.5 Experiment Design

The experiment exposed participants to both the initial construction of
the surrounding environment from an empty scene and the incremen-
tal filling of the scene during navigation. Two paths were used, each
consisting of a start position, four intermediate nodes, and an end po-
sition (Figure 5). The initial data size was 7 MB for the more complex
Path 1 and 5 MB for the lighter Path 2, whereas it was 26 MB and
20 MB for full objects before packetization. Each participant expe-
rienced both the control and experimental conditions for both paths,
resulting in four trials in total (2 paths × 2 conditions). The trial order
was fixed as: Path 1 control, Path 1 experimental, Path 2 control, and
Path 2 experimental. This fixed ordering was chosen to standardize
the learning curve for VR navigation across all participants, ensuring
that any performance differences were due to the method rather than
varying familiarity with the controls.

Procedure. Before putting on the headset, participants listened to
an explanation of the study flow from the researchers. After launch-
ing the application on the headset, they waited until all participants
were ready. Each participant initially spawned at the same start posi-
tion in the virtual environment, seated on the empty ground. At this
stage, they could freely rotate their head to look around the scene, but
teleportation and thumbstick movement were disabled. To reduce dis-
comfort, thumbstick-based rotation was supported with a peripheral
black vignette [9] from Quest SDK.

Once all participants had launched the application, the researchers
began sending scene packets. In the control condition, a participant
proceeded once they had received all required packets. In the exper-
imental condition, a participant proceeded once the server had trans-
mitted the necessary packets three times. In both cases, the server
notified participants when they could start answering questions about
their experience while seated in the virtual environment. Figure 6 right
shows the view of answering questions.

After answering the questions, the first path node (N1) appeared and
participants began moving along the path using teleportation. When
a participant arrived at a path node by teleporting in the circle (Fig-
ure 6 left), the current node disappeared and the next node appeared.
Each node was visible from the previous one, and an arrow was always
pointing from the participant’s current position to the next node until
they reached the end point. Upon reaching the end position, partici-
pants again could not move and answered the same set of questions.
Those who finished early were allowed to remove the headset and rest
until others completed the task.

After all participants reached the end position and finished the ques-
tionnaire, the researcher instructed them to put the headset back on.
The server then moved participants to the new start position, removed
all objects in the client view, cleared transmission counts and bitmap
ACKs, and initialized the next round.

4.6 Data Collection

The client headset recorded the log of position and orientation, as well
as the packets received each frame. This data allows simulating the



movement offline and calculating the metrics for evaluating user ex-
periences. Other than the objective data log, we also asked each par-
ticipant a few questions (8 custom questions + 10 SUS [2]) after the
initial transmission and after the navigation for each path. The custom
questions are on a five-point Likert scale:

1. I noticed many missing parts in the scene while it was loading.
2. The scene became engaging quickly, even though it was still

loading.
3. I noticed many holes in the scene while it was loading.
4. The scene never loaded completely.
5. The parts of the scene appearing as they were loaded were dis-

tracting.
6. The loading time was acceptable.
7. I would prefer to see a blank screen until the entire scene is

loaded.
8. I like seeing the scene fill in gradually.

4.7 Data Analysis
We analyze the following quantitative metrics over time based on the
log files recorded from the client headsets. For each frame recorded,
we read the position and orientation so that we can know and locally
load the ground truth of what the client can see. We also recorded the
accumulated received packets along the path.

• missed packets percentage: the percentage of necessary packets
at the current position received by the participants.

• pixel level depth error: the percentage of correct pixels in terms
of depth on the client view, compared to the ground truth with all
full objects.

We used a Wilcoxon signed-rank test [31] with Holm-corrected p-
value [11] and Rosenthal’s r value [27] to find out the significance
level of both quantitative and qualitative between the control and ex-
perimental conditions.

4.8 Results
4.8.1 Quantitative Results
Percentage of missed packets over time. Figure 7 shows the percent-
age of missed packets over time along the four paths for the 16 par-
ticipants session. At the beginning of each path, when participants
remained stationary, all curves exhibited similar slopes and dropped
to 0% within a comparable time window. As summarized in Table 1,
our method allowed participants to recover packets much faster: on
average, 95% of packets were received by 4.4 s and 99% by 4.7 s,
compared to 48.8 s and 51.5 s for the conventional method. Signifi-
cance tests confirmed these differences at both 5% and 1% thresholds
across all paths (p < 0.001, r > 0.87, very large effect).

Results for the 7-participant session (Table 2) showed the same pat-
tern: our method consistently outperformed the conventional method
(p < 0.001, r > 0.87, very large effect). However, average times
for the conventional method were nearly halved relative to the 16-
participant session, supporting HP1 that conventional performance de-
pends on the number of clients. By contrast, recovery times for our
method remained stable, with minor differences attributable to UDP
variability across sessions (p > 0.05), further supporting HP1.

After participants began navigating, packet missing diverged
sharply between methods. With the conventional method, all partic-
ipants experienced severe missing packets while moving (left panels
of Figure 7). With our method, only the first participant to advance
suffered noticeable missing packets; subsequent participants received
their required packets through multicast, keeping their missing rate
below 25%. Averaged results (Figure 8) confirm this trend even with
fewer participants. This supports HP2, showing that our method re-
duces packets missing during movement by leveraging shared trans-
mission.

Pixel level depth error. Figure 9 shows the individual depth error
traces over time for the 16-participant session. At the beginning, when

Table 1: N=16. Time [s] statistics for packet loss rate at thresholds
T = 5% and T = 1%.

Path Method T Mean Median Min Max

Path A
Conventional 5% 48.84 48.80 48.35 49.72

1% 51.48 51.58 50.31 53.25

Our method 5% 4.40 4.42 4.28 4.53
1% 4.71 4.71 4.58 5.24

Path B
Conventional 5% 30.23 30.05 30.02 31.68

1% 31.45 31.26 31.22 32.88

Our method 5% 2.26 2.26 1.92 3.07
1% 3.14 3.10 2.96 3.60

Path A+B
Conventional 5% 39.54 40.01 30.02 49.72

1% 41.47 41.59 31.22 53.25

Our method 5% 3.33 3.67 1.92 4.53
1% 3.93 4.09 2.96 5.24

Table 2: N=7. Time [s] statistics for packet loss rate at thresholds
T = 5% and T = 1%.

Path Method T Mean Median Min Max

Path A
Conventional 5% 25.94 25.92 25.75 26.29

1% 27.10 27.01 26.79 27.34

Our method 5% 5.09 4.87 4.82 6.46
1% 5.88 5.72 5.37 6.67

Path B
Conventional 5% 16.05 15.94 15.66 16.51

1% 16.46 16.48 16.25 16.68

Our method 5% 3.61 3.26 2.96 5.58
1% 4.21 3.80 3.56 5.83

Path A+B
Conventional 5% 20.99 21.13 15.66 26.29

1% 21.78 21.73 16.25 27.34

Our method 5% 4.35 4.82 2.96 6.46
1% 5.04 5.49 3.56 6.67

all participants remained stationary, the conventional method produced
a smooth and rapid decrease in error, reflecting the advantage of a re-
liable channel in transmitting packets with large footprints. With our
method, each packet is equally prone to being missing; in the worst
case, participants may miss packets corresponding to large visible ar-
eas, resulting in higher depth errors for one or two individuals (see
zoomed-in regions of the top-right and bottom-right panels). Thanks
to bitmap ACKs, however, these missing packets were quickly recov-
ered, and errors converged.

Figure 10 shows the average depth errors for the 16- and 7-
participant sessions. The sharp initial drop illustrates the sending
priority strategy, which favors unsent packets over those with large
footprints. In the 16-participant session, our method showed slightly
higher initial errors than the conventional method but rapidly con-
verged to zero after repeated transmissions. The comparison across
group sizes supports HP1: for the conventional method, depth error
decreased faster with 7 participants than with 16, while for our method
the decrease was stable or slightly slower, showing robustness to group
size changes.

During navigation, our method further outperformed the conven-
tional approach. As shown in Figure 9, participants who followed the
“pioneer” on a path exhibited minimal depth errors, while only the
pioneers experienced occasional spikes. In the averaged results (Fig-
ure 10), spikes under our method were fewer and smaller compared to
the conventional method. This provides additional support for HP2 in
terms of depth error.

4.8.2 Qualitative Results
Custom questions. For the initial stationary stage of the 16 partici-
pants session (Figure 11 top), the Wilcoxon signed-rank tests (N = 16)
showed that for Path A, no significant differences were found for
Q1–Q5 and Q7–Q8 (pholm ≥ 0.07), although Q5 (distraction) ap-
proached significance (Z = −2.0, pholm = 0.07, r = 0.69, large). A
significant difference was observed only for Q6 (loading time), with a
very large effect (Z = −2.5, pholm = 0.01, r = 0.76). For Path B,
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significant differences emerged for Q1 (missing parts: Z = −2.5,
pholm = 0.02, r = 0.66, large), Q3 (holes: Z = −2.8, pholm = 0.01,
r = 0.89, very large), and Q6 (loading time: Z =−2.8, pholm = 0.01,
r = 0.89, very large). Other items on Path B did not reach significance
(pholm ≥ 0.08), though several showed large to very large effect sizes
(e.g., Q5: r = 0.69; Q7: r = 0.77; Q8: r = 0.95). For the combined
analysis across Paths A and B, significant differences were observed
for Q1 (missing parts: Z =−2.4, pholm = 0.03, r = 0.50, medium), Q5
(distraction: Z =−2.5, pholm = 0.02, r = 0.68, large), and Q6 (loading
time: Z = −3.8, pholm < 0.01, r = 0.84, very large). The remaining
questions did not yield significant differences (pholm ≥ 0.06).

For the moving stage (Figure 11 bottom), the Wilcoxon signed-rank
tests (N = 16) showed no significant differences across any items on
Path A (pholm ≥ 0.14), although moderate to large effect sizes were
observed for Q4 (scene never loaded completely: Z = −1.6, pholm =
0.14, r = 0.64) and Q7 (preference for blank screen: Z = −0.8,
pholm = 0.41, r = 0.46). In contrast, several items reached significance
on Path B: Q1 (missing parts: Z =−3.2, pholm < 0.01, r = 0.88, very
large), Q2 (quick engagement: Z =−2.5, pholm = 0.03, r = 0.89, very
large), Q3 (holes: Z = −3.1, pholm < 0.01, r = 0.88, very large), Q5
(distraction: Z = −2.6, pholm = 0.03, r = 0.82, very large), and Q6
(loading time: Z = −2.9, pholm = 0.01, r = 0.89, very large). Q7
and Q8 also showed large effects (r = 0.72 and 0.74, respectively) but
did not reach significance after correction. For the combined analy-
sis across Paths A and B, significant improvements were observed

for Q1 (Z = −3.4, pholm < 0.01, r = 0.68, large), Q2 (Z = −2.4,
pholm = 0.03, r = 0.62, large), Q3 (Z =−3.2, pholm < 0.01, r = 0.67,
large), Q4 (Z = −2.4, pholm = 0.04, r = 0.68, large), Q5 (Z = −2.5,
pholm = 0.03, r = 0.58, large), and Q6 (Z = −3.2, pholm < 0.01,
r = 0.79, very large), while Q7 and Q8 again showed large but non-
significant effects (pholm ≥ 0.08).

When comparing to the initial stationary stage, where significant
differences were limited primarily to Q6 (loading time) and selected
perceptual items on Path B, the moving stage produced a broader set of
significant improvements, particularly on Path B and in the combined
analysis. This pattern suggests that the benefits of our method became
more salient during active navigation, not only in perceived loading
time but also in reducing missing content, holes, and distraction, and
in fostering quicker engagement with the scene, supporting HP2 in a
subjective way.

For the 7-participant session (N = 7) (Figure 12), no significant
differences emerged between the conventional method and ours across
any questions or paths after Holm correction. Most items had pholm ≥
0.09, though several showed large to very large effect sizes despite
nonsignificance (e.g., Path A Q1: Z = 2.2, pholm = 0.09, r = 0.90;
Path B Q3: Z =−1.6, pholm = 0.75, r = 0.93). A similar pattern was
observed in the moving stage: no items reached significance (pholm ≥
0.14), yet effect sizes remained large (e.g., Path A Q3: Z = −1.3,
pholm = 0.50, r = 0.95; Path B Q1: Z =−1.6, pholm = 0.50, r = 0.93).

In contrast, the 16-participant session revealed multiple significant
differences, especially during the moving stage, where our method
substantially reduced perceptions of missing content, holes, distrac-
tion, and loading time on Path B and in the combined analysis. The
discrepancy between the N = 7 and N = 16 cohorts reflects the role of
statistical power in detecting effects. More importantly, the consistent
pattern supports HP1: with the conventional method, participants’ per-
ceptions degraded as client count increased, consistent with reduced
effective bandwidth per client. By comparison, our method was more
robust under higher concurrency, maintaining similar perceptual rat-
ings even with 16 simultaneous users.

SUS scores. For the 16-participant sessions (Figure ??, top),
SUS scores were consistently higher for our method. In the initial
stage, significant differences were found on Path B (pHolm = 0.04)
and Path A+B (pHolm = 0.04), while Path A showed no difference.
In the moving stage, scores again favored our method, though with-
out significance (pHolm ≥ 0.10). Our method generally reached or ex-
ceeded the SUS threshold of 80 (good usability), whereas the conven-
tional method remained closer to the marginal threshold of 68. For the
7-participant session (Figure ??, bottom), no significant differences
were detected, and both methods remained near the marginal usability
range.
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Fig. 9: N=16. Pixel-level depth error for individual participants.
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5 DISCUSSION

The results of our evaluation demonstrate that our method effectively
breaks the linear dependency between user count and scene transmis-
sion time, achieving near-constant scene recovery times (O(1)) regard-
less of group size. Beyond these quantitative metrics, the findings of-
fer broader insights into the trade-offs required to design deployable
multi-user VR systems.

5.1 Bridging the Deployment Gap

A significant challenge in networked VR is the disconnect be-
tween theoretical efficiency and practical deployability. Prior re-
search has demonstrated that Physical/MAC-layer multicast schemes
(e.g., [10][24]) can theoretically optimize transmission rates. While
these approaches offer superior raw throughput, they suffer from a crit-
ical deployment gap: they typically require root-level driver modifi-
cations or specialized Software Defined Radios (SDRs) [34]. Such ac-
cess is strictly prohibited on modern commercial headsets (e.g., Meta
Quest series), which operate as secure, locked appliances.

Our work addresses this gap by shifting the reliability logic to the
application layer. By implementing a lightweight bitmap acknowledg-
ment mechanism over standard UDP, our method achieves the func-
tional benefits of robust multicast—scalability without violating the
“walled garden” constraints of commodity hardware. This validates
that scalable, dense VR is achievable now with off-the-shelf infrastruc-
ture, rather than being contingent on future open-hardware standards.
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Fig. 11: N=16. Top: initial loading stage; bottom: moving stage.
Custom questionnaire results in boxplots across groups A, B, and
A+B. White triangles indicate means. Negatively worded items are
reverse-scored (higher = better).

5.2 Generalizability and Environmental Constraints
Our evaluation focused on a single, highly collocated environment,
which represents the worst-case scenario for wireless contention. In a
classroom setting, dozens of devices compete for the same bandwidth
within a confined physical space, maximizing interference and noise
floor. Since our system proved robust under these high-interference
conditions (N = 16 on a single access point), we anticipate perfor-
mance would arguably improve in more distributed or spatially sparse
setups where signal-to-noise ratios are more favorable.

However, the efficacy of our approach is inextricably linked to Vir-
tual Spatial Coherence—the assumption that users view overlapping
content. In educational contexts (e.g., a geology class examining a
canyon) or guided tours, this assumption holds true. In scenarios with
high divergence (e.g., 50 users exploring 50 distinct virtual worlds in-
dependently), the benefits of multicast would diminish, and the sys-
tem would revert to the efficiency of unicast. Future implementations
could address this by adopting a hybrid scheduling approach, dynam-
ically switching between multicast for the “main group” and unicast
for “explorers” based on real-time clustering analysis.

5.3 Ecological Validity and User Experience
While our technical metrics demonstrate bandwidth efficiency, the
subjective results provide a critical validation of ecological viability.
In VR, transmission latency is not merely a performance statistic; it
translates directly to motion sickness and breaks in presence—factors
that simulation-based studies cannot capture.
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Our results demonstrate that the technical stability of application-
layer multicast (O(1) scaling) effectively translates to perceptual
comfort. The statistically significant reduction in “distraction” and
“perceived holes” confirms that our packetization strategy satisfies the
human perceptual threshold for continuity. This corroborates our tech-
nical findings, proving that the system’s bandwidth savings do not
come at the cost of the user’s physiological well-being or immersion.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This paper demonstrated that application-layer multicast, combined
with visibility-aware scheduling and lightweight acknowledgments,
enables collocated VR users to load and navigate complex environ-
ments significantly faster than conventional unicast TCP. By shift-
ing reliability logic from the kernel to the application, we bridge the
gap between theoretical network efficiency and practically deployable
commodity hardware. A controlled study with 23 participants con-
firmed that this approach scales efficiently (O(1)) where per-client
transmission degrades (O(N)), while maintaining a quality of expe-
rience that users find physiologically comfortable.

Limitations. Our primary constraint is the reliance on Virtual Spa-
tial Coherence—the assumption that users view overlapping content.
While this holds true for educational contexts (e.g., guided tours, lec-
tures), the benefits of multicast diminish in scenarios with high diver-
gence, such as users exploring distinct virtual worlds independently.
Additionally, our evaluation prioritized visual completeness and per-
ceived stability; further longitudinal studies are needed to quantify the
impact of multicast latency on highly interactive, fine-motor tasks.

Future Work. To address the coherence limitation, future work
will explore hybrid scheduling that dynamically switches between
multicast for the main group and unicast for divergent “explorers.” We
also plan to extend the evaluation to multi-AP deployments in larger
lecture halls, testing the system’s resilience under variable signal-to-
noise ratios and heterogeneous device capabilities. These steps will
move collocated VR closer to ubiquitous deployment at lecture scale
while preserving the efficiency required for high-fidelity immersion.
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