
Band Overdrive: A Multi-Instrument Virtual Reality Music Rhythm Game
Junjie Wang* Shuqi Liao † Hao Wang‡ Christos Mousas§

Department of Computer Graphics Technology, Purdue University, West Lafayette, Indiana 47907, USA

Figure 1: Four users in different locations play music together using the developed networked music rhythm game.

ABSTRACT

Music rhythm games have a tremendous audience in the modern
game industry. However, most of these games have been deployed
for mobile devices, desktop computers, or game consoles. Although
users can still experience the excitement of playing music by tapping
on-screen buttons or using controllers, the user experience still has
more room for improvement. We therefore developed a network-
based multiuser virtual reality music rhythm game in which users
can choose their preferred instrument or sing as a band while also
collecting points based on their performance.

Index Terms: Computer Graphics—Graphics Systems and
Interfaces—Virtual Reality; Applied Computing—Arts and
Humanities—Sound and Music Computing

1 INTRODUCTION

Nowadays, music rhythm computer games are no longer limited
to gameplay that challenges the user’s sense of rhythm and fulfills
the purpose of entertainment [1]. These games have shifted their
gameplay objectives closer to the realistic simulation of specific
musical instruments’ detailed interaction and performance. For
example, the Rock Band1 and Guitar Hero2 series are successful
examples of music rhythm games that significantly influenced both
the game and music industries [2, 3].

Virtual reality (VR) can provide a more diverse gaming experi-
ence and a more realistic simulation of music rhythm games due to
the ability of users to use hand motions and gestures to interact with
different instruments. However, only a few VR rhythm games use
the full potential of VR to provide immersive gameplay and more
advanced user interaction. Thus, we present Band Overdrive (our
implementation can be found on our project’s GitHub3 page). This
network-based multiuser music rhythm game provides ensembled
rock band instruments that users can experience while being part
of a band and playing their favorite songs on one of the provided
instruments. Band Overdrive (see Figure 1) provides user-friendly
interactions in VR and a more realistic simulation and experience of
musical instruments.

*e-mail: wang4982@purdue.edu
†e-mail: liao201@purdue.edu
‡e-mail: wang5329@purdue.edu
§e-mail: cmousas@purdue.edu

1https://www.rockband4.com
2https://www.guitarhero.com
3https://github.com/BandOverdrive

2 RELATED GAMES

Rock Band and Guitar Hero are two of the most popular rhythm
games on consoles and desktop computers (client-side) that provide
game-based simulations of different instruments. However, both
games require additional devices (specialized controllers), which
could be considered inconvenient for most users and increase the
cost of acquiring such games. Unplugged4 is a VR guitar simulation
rhythm game for Oculus Quest. In this game, using hand tracking,
users are asked to match their fingers to the provided chords and
strum the strings at the right time. Paradiddle,5 a VR drum simu-
lation application from the Side Quest community, provides users
with the ability to assemble their virtual drum set and then use the
VR controllers to play the drums. Band Overdrive considers the
advances of these music rhythms games and instrument simulations
and provides multiuser VR gameplay while also offering a better
gaming experience.

3 VIRTUAL INSTRUMENTS

We implemented four virtual instruments: a drum set, guitar, bass
guitar, and keyboard. We also provide the ability for users to sing
karaoke-style.

3.1 Drum Set
We implemented a virtual drum set, which the users can play via VR
controllers and hand movement. Each virtual hand holds a drumstick.
When a collision between a drumstick and the different drum parts
(drums or cymbals) is detected through a collision trigger function,
the system plays the corresponding sound. During gameplay, a drum
tablature appears in front of the drums to instruct the user which
drum part to hit with the drumstick. Figure 2 shows the developed
drum set scene.

Figure 2: Drum set scene (left) and drum gameplay from the user’s
point of view.

3.2 Guitar and Bass Guitar
Our guitar and bass guitar playing method provides natural interac-
tion to users through hand tracking. We implemented hand tracking
using the Oculus hand tracking6 functionality, and based on the

4http://unplugged-vr.com
5https://paradiddleapp.com
6https://developer.oculus.com/documentation/unity/unity-handtracking



hand tracking data, we fix the relative position between the hand
and guitar (or bass guitar). Moreover, by using the hand tracking
functionality, we can retrieve the finger bones’ ID, which is used
to detect collision between fingers and buttons to ensure the users
are pressing the correct button on the guitar. Lastly, the colorful
rhythm notes on the tablature are also present in the virtual scene to
instruct the users which buttons to press at each time step based on
the selected music. In Figure 3, we illustrate examples of our guitar
playing scene.

Figure 3: Guitar playing scene from the user’s point of view.

3.3 Keyboard
To enable users to play such an instrument, we used the hand tracking
functionality of Oculus Quest. Using their fingers, users can press
the different buttons on the keyboard. Button pressing is achieved
using a collision trigger functionality. It should be noted that, in our
application, we provide only a two-octave range. Also, to simplify
keyboard playing, we provide tablature-style instructions to users.
In Figure 4, we illustrate the developed scene for the keyboard.

Figure 4: Developed keyboard scene (left) and keyboard playing
from the user’s point of view (right).

3.4 Vocals
We also implemented vocals to allow users to sing karaoke-style.
The implementation of vocals has a different mechanism compared
with the previously mentioned instruments. To implement vocals,
we used the Human Voice Pitch Detection7 plugin to get the pitches
from human voice input and for voice detection analysis. It should
be noted that, because voice recording is considered personal data,
we ask users to provide recording permission before the game starts.
In Figure 5, we present the scene that was used for vocals.

Figure 5: Vocal playing scene.

4 RHYTHM GAMEPLAY

The gameplay development of our method consists of two parts: 1)
MIDI file processing (including file reading and analysis) and 2)
building the rhythm gameplay engine.

7https://assetstore.unity.com/packages/tools/audio/human-voice-pitch-
detector-109019

MIDI File Reading and Analysis. We used DryWetMIDI8 for
MIDI file reading. After importing a MIDI song to our system,
DryWetMIDI reads the file and extracts each instrument’s audio
dataset. Then, based on the user’s selected difficulty, the musical
notes are subdivided into four levels: “Easy,” “Medium,” “Hard,” and
“Expert.” Lastly, we get a list of notes of the current corresponding
instrument and difficulty, in which a note consists of its time and
lane position. To perform the correct rhythm game, we split the note
list by lane.

Gameplay Data Structure. Each gameplay scene (i.e., drum,
guitar, bass guitar, keyboard, and vocals) needs to inherit a “Track,”
“Lane,” and “Note” class to generate the rhythm gameplay. Specifi-
cally, the “Track” script is the control center for the rhythm gameplay.
This script includes the song and score managements. In song man-
agement, “Track” works for audio source loading and analysis. In
score management, it works for updating the score based on the
hitting rhythm strike accuracy. “Lane” is used to generate the series
of note prefabs based on the input note list from “Track” and to
ensure time alignment between the notes and the audio. Each lane
on the tablature represents one type of musical note in a track, and
only one track will be defined in one instrument. “Note” is respon-
sible for rendering the selected note (sound). It should be noted
that the “Track,” “Lane,” and “Note” classes can have correspond-
ing child classes based on the instrument type, and each gameplay
scene features its own program processing based on its respective
attributes.

5 MULTIUSER MODE

We used the Photon Unity Networking 2 (PUN2)9 to implement
the multiuser mode of our game. In the multiuser mode, each user
can choose different rooms in the lobby and then enter team play.
After the assigned users in the same room select their role (i.e.,
instrument), the master client of the room can get the control canvas
to set up the common playing song. After choosing a song and its
difficulty level, the master client can start the game for all the users
in that room. Then, each user can play the instrument in the team
based on their selected roles.

6 CONCLUSION AND FUTURE WORK

We developed a multiuser VR music rhythm game for Oculus Quest
in the Unity game engine. Our game allows the user to play one of
four implemented instruments (i.e., drum, guitar, bass guitar, and
keyboard), or to sing (vocals). We automated the rhythm gameplay
process by implementing a method to read and analyze the imported
music files.

We will concentrate on improving the VR gaming experience in
our future work. Among other goals, we want to improve the realism
of the developed scenes, create more realistic musical instrument
gameplay, revise the synchronization of the multiuser mode, and
create a more user-friendly interface. Lastly, we want to conduct
user studies to understand how users experience such a VR game.

REFERENCES

[1] D. Arsenault. Guitar hero:” not like playing guitar at all”? Loading,
2(2), 2008.

[2] K. Miller. Schizophonic performance: Guitar hero, rock band, and
virtual virtuosity. Journal of the society for American Music, 3(4):395–
429, 2009.

[3] D. Roesner. The guitar hero’s performance. Contemporary Theatre
Review, 21(3):276–285, 2011.

8https://melanchall.github.io/drywetmidi/index.html
9https://doc.photonengine.com/en-us/realtime/current/getting-

started/realtime-intro


	Introduction
	Related Games
	Virtual Instruments
	Drum Set
	Guitar and Bass Guitar
	Keyboard
	Vocals

	Rhythm Gameplay
	Multiuser Mode
	Conclusion and Future Work

